publications

publications by categories in reversed chronological order. generated by jekyll-scholar.

2024

  1. 3D molecule generation by denoising voxel grids
    Pedro O O Pinheiro, Joshua Rackers, Joseph Kleinhenz, Michael Maser, Omar Mahmood, Andrew Watkins, Stephen Ra, Vishnu Sresht, and Saeed Saremi
    Advances in Neural Information Processing Systems, 2024
  2. Building an ab initio solvated DNA model using Euclidean neural networks
    Alex J Lee, Joshua A Rackers, Shivesh Pathak, and William P Bricker
    Plos one, 2024
  3. On the design space between molecular mechanics and machine learning force fields
    Yuanqing Wang, Kenichiro Takaba, Michael S Chen, Marcus Wieder, Yuzhi Xu, Tong Zhu, John ZH Zhang, Arnav Nagle, Kuang Yu, Xinyan Wang, and  others
    arXiv preprint arXiv:2409.01931, 2024
  4. JAMUN: Transferable Molecular Conformational Ensemble Generation with Walk-Jump Sampling
    Ameya Daigavane, Bodhi P Vani, Saeed Saremi, Joseph Kleinhenz, and Joshua Rackers
    arXiv preprint arXiv:2410.14621, 2024

2023

  1. Accurate Hellmann–Feynman forces from density functional calculations with augmented Gaussian basis sets
    Shivesh Pathak, Ignacio Ema López, Alex J Lee, William P Bricker, Rafael López Fernández, Susi Lehtola, and Joshua A Rackers
    The Journal of Chemical Physics, 2023
  2. A recipe for cracking the quantum scaling limit with machine learned electron densities
    Joshua A Rackers, Lucas Tecot, Mario Geiger, and Tess E Smidt
    Machine Learning: Science and Technology, 2023

2022

  1. Cracking the quantum scaling limit with machine learned electron densities
    Joshua A Rackers, Lucas Tecot, Mario Geiger, and Tess E Smidt
    arXiv preprint arXiv:2201.03726, 2022
  2. Predicting quantum-accurate electron densities for DNA with equivariant neural networks
    Alex Lee, Joshua Rackers, and William Bricker
    2022
  3. Accurate hellmann-feynman forces with optimized atom-centered gaussian basis sets.
    Shivesh Pathak, Joshua Rackers, Ema Lopez Ignacio, Lopez Fernandez Rafael, Alex J Lee, William P Bricker, and Susi Lehtola
    2022
  4. Hierarchical learning in Euclidean neural networks
    Joshua A Rackers, and Pranav Rao
    arXiv preprint arXiv:2210.04766, 2022
  5. Predicting accurate ab initio DNA electron densities with equivariant neural networks
    Alex J Lee, Joshua A Rackers, and William P Bricker
    Biophysical Journal, 2022
  6. Classical exchange polarization: An anisotropic variable polarizability model
    Moses KJ Chung, Zhi Wang, Joshua A Rackers, and Jay W Ponder
    The Journal of Physical Chemistry B, 2022

2021

  1. Thermodynamics of ion binding and occupancy in potassium channels
    Zhifeng Jing, Joshua A Rackers, Lawrence R Pratt, Chengwen Liu, Susan B Rempe, and Pengyu Ren
    Chemical Science, 2021
  2. Polarizable water potential derived from a model electron density
    Joshua A Rackers, Roseane R Silva, Zhi Wang, and Jay W Ponder
    Journal of chemical theory and computation, 2021
  3. Water in an external electric field: comparing charge distribution methods using ReaxFF simulations
    Jason P Koski, Stan G Moore, Raymond C Clay, Kurt A O’Hearn, H Metin Aktulga, Mark A Wilson, Joshua A Rackers, J Matthew D Lane, and Normand A Modine
    Journal of Chemical Theory and Computation, 2021
  4. equivariant_electron_density
    Joshua Rackers
    2021

2019

  1. Classical Pauli repulsion: An anisotropic, atomic multipole model
    Joshua A Rackers, and Jay W Ponder
    The Journal of chemical physics, 2019
  2. A Physics-Based Intermolecular Potential for Biomolecular Simulation
    Joshua A Rackers
    Washington University in St. Louis, 2019

2018

  1. Tinker 8: software tools for molecular design
    Joshua A Rackers, Zhi Wang, Chao Lu, Marie L Laury, Louis Lagardère, Michael J Schnieders, Jean-Philip Piquemal, Pengyu Ren, and Jay W Ponder
    Journal of chemical theory and computation, 2018
  2. A physically grounded damped dispersion model with particle mesh Ewald summation
    Joshua A Rackers, Chengwen Liu, Pengyu Ren, and Jay W Ponder
    The Journal of chemical physics, 2018
  3. TINKER 8: a modular software package for molecular design and simulation
    JA Rackers, ML Laury, C Lu, Z Wang, L Lagardère, JP Piquemal, P Ren, JW Ponder, and MJ Schnieders
    J. Chem. Theory Comput., 2018

2017

  1. An optimized charge penetration model for use with the AMOEBA force field
    Joshua A Rackers, Qiantao Wang, Chengwen Liu, Jean-Philip Piquemal, Pengyu Ren, and Jay W Ponder
    Physical Chemistry Chemical Physics, 2017

2016

  1. Scalable improvement of SPME multipolar electrostatics in anisotropic polarizable molecular mechanics using a general short-range penetration correction up to quadrupoles
    Christophe Narth, Louis Lagardère, Étienne Polack, Nohad Gresh, Qiantao Wang, David R Bell, Joshua A Rackers, Jay W Ponder, Pengyu Y Ren, and Jean-Philip Piquemal
    Journal of computational chemistry, 2016

2015

  1. General model for treating short-range electrostatic penetration in a molecular mechanics force field
    Qiantao Wang, Joshua A Rackers, Chenfeng He, Rui Qi, Christophe Narth, Louis Lagardere, Nohad Gresh, Jay W Ponder, Jean-Philip Piquemal, and Pengyu Ren
    Journal of chemical theory and computation, 2015